返回首页
微文呈现 > 百科 > 总结范文 > 正文

必考总结

2025/03/08总结范文

微文呈现整理的必考总结(精选10篇),汇集精品范文供参考,请您欣赏。

必考总结 篇1

基因的本质

1.DNA的化学结构:①DNA是高分子化合物:组成它的基本元素是C、H、O、N、P等;②组成DNA的基本单位——脱氧核苷酸。每个脱氧核苷酸由三部分组成:一个脱氧核糖、一个含氮碱基和一个磷酸;③构成DNA的脱氧核苷酸有四种。DNA在水解酶的作用下,可以得到四种不同的核苷酸,即腺嘌呤(A)脱氧核苷酸;鸟嘌呤(G)脱氧核苷酸;胞嘧啶(C)脱氧核苷酸;胸腺嘧啶(T)脱氧核苷酸;组成四种脱氧核苷酸的脱氧核糖和磷酸都是一样的,所不相同的是四种含氮碱基:ATGC;④DNA是由四种不同的脱氧核苷酸为单位,聚合而成的脱氧核苷酸链。

2.DNA的双螺旋结构:DNA的双螺旋结构,脱氧核糖与磷酸相间排列在外侧,形成两条主链(反向平行),构成DNA的基本骨架。两条主链之间的横档是碱基对,排列在内侧。相对应的两个碱基通过氢键连结形成碱基对,DNA一条链上的碱基排列顺序确定了,根据碱基互补配对原则,另一条链的碱基排列顺序也就确定了。

3.DNA的特性:①稳定性:DNA分子两条长链上的脱氧核糖与磷酸交替排列的顺序和两条链之间碱基互补配对的方式是稳定不变的,从而导致DNA分子的稳定性;②多样性:DNA中的碱基对的排列顺序是千变万化的。碱基对的排列方式:4n(n为碱基对的数目);③特异性:每个特定的DNA分子都具有特定的碱基排列顺序,这种特定的碱基排列顺序就构成了DNA分子自身严格的特异性。

4.碱基互补配对原则在碱基含量计算中的应用:①在双链DNA分子中,不互补的两碱基含量之和是相等的,占整个分子碱基总量的50%;②在双链DNA分子中,一条链中的嘌呤之和与嘧啶之和的比值与其互补链中相应的比值互为倒数;③在双链DNA分子中,一条链中的不互补的两碱基含量之和的比值(A+T/G+C)与其在互补链中的比值和在整个分子中的比值都是一样的。

5.DNA的复制:①时期:有丝分裂间期和减数第一次分裂的间期;②场所:主要在细胞核中;③条件:a、模板:亲代DNA的两条母链;b、原料:四种脱氧核苷酸为;c、能量:(ATP);d、一系列的酶。缺少其中任何一种,DNA复制都无法进行;④过程:a、解旋:首先DNA分子利用细胞提供的能量,在解旋酶的作用下,把两条扭成螺旋的双链解开,这个过程称为解旋;b、合成子链:然后,以解开的每段链(母链)为模板,以周围环境中的脱氧核苷酸为原料,在有关酶的作用下,按照碱基互补配对原则合成与母链互补的子链。随的解旋过程的进行,新合成的子链不断地延长,同时每条子链与其对应的母链互相盘绕成螺旋结构,c、形成新的DNA分子;⑤特点:边解旋边复制,半保留复制。⑥结果:一个DNA分子复制一次形成两个完全相同的DNA分子;⑦意义:使亲代的遗传信息传给子代,从而使前后代保持了一定的连续性;⑧准确复制的原因:DNA之所以能够自我复制,一是因为它具有独特的`双螺旋结构,能为复制提供模板;二是因为它的碱基互补配对能力,能够使复制准确无误。

6.DNA复制的计算规律:每次复制的子代DNA中各有一条链是其上一代DNA分子中的,即有一半被保留。一个DNA分子复制n次则形成2n个DNA,但含有最初母链的DNA分子有2个,可形成2ⅹ2n条脱氧核苷酸链,含有最初脱氧核苷酸链的有2条。子代DNA和亲代DNA相同,假设x为所求脱氧核苷酸在母链的数量,形成新的DNA所需要游离的脱氧核苷酸数为子代DNA中所求脱氧核苷酸总数2nx减去所求脱氧核苷酸在最初母链的数量x。

7.核酸种类的判断:首先根据有T无U,来确定该核酸是不是DNA,又由于双链DNA遵循碱基互补配对原则:A=T,G=C,单链DNA不遵循碱基互补配对原则,来确定是双链DNA还是单链DNA。

必考总结 篇2

1、定义:运动轨迹为曲线的运动。2、物体做曲线运动的方向:

做曲线运动的物体,速度方向始终在轨迹的切线方向上,即某一点的瞬时速度的方向,就是通过该点的曲线的切线方向。3、曲线运动的性质

由于运动的速度方向总沿轨迹的切线方向,又由于曲线运动的轨迹是曲线,所以曲线运动的速度方向时刻变化。即使其速度大小保持恒定,由于其方向不断变化,所以说:曲线运动一定是变速运动。

由于曲线运动速度一定是变化的,至少其方向总是不断变化的,所以,做曲线运动的物体的加速度必不为零,所受到的合外力必不为零。4、物体做曲线运动的条件(1)物体做一般曲线运动的条件

物体所受合外力(加速度)的方向与物体的速度方向不在一条直线上。(2)物体做平抛运动的条件

物体只受重力,初速度方向为水平方向。

可推广为物体做类平抛运动的条件:物体受到的恒力方向与物体的初速度方向垂直。(3)物体做圆周运动的条件

物体受到的合外力大小不变,方向始终垂直于物体的速度方向,且合外力方向始终在同一个平面内(即在物体圆周运动的轨道平面内)

总之,做曲线运动的物体所受的合外力一定指向曲线的凹侧。5、分类

⑴匀变速曲线运动:物体在恒力作用下所做的曲线运动,如平抛运动。

⑵非匀变速曲线运动:物体在变力(大小变、方向变或两者均变)作用下所做的曲线运动,如圆周运动。

必考总结 篇3

1. 位置的表示方法: A(列,行)如:A(3,4)表示A点在第三列第四行。

一般先看横的数字,再看竖的数字,注意中间是逗号

2.分数乘法的意义:一个数×分数

分数×一个数

3.乘积是1的两个数互为倒数 1的倒数是1 0没有倒数

4.除以一个不等于0的数,等于乘这个数的倒数

5.两个数相除又叫做两个数的比。比值通常用分数表示,也可以用分数或整数

6.比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变

7.圆的周长与它的直径的比值叫做圆周率,用兀来表示,兀≈3.14

8.有关圆的公式:

C= 兀d = 2兀r S =兀r 2

d=C÷兀 d=2 r r = d÷2 r = C÷兀÷2

圆环的面积S = 兀 R 2-兀 r 2

9.原价×折扣=现价 营业额×税率=应纳税额 本金×利率×时间=利息

10.条形统计图:可以清楚的看出数据的多少

折线统计图:可以清楚的看出数据的增减变化趋势

扇形统计图:可以清楚的看出各部分同总数之间的关系

六年级数学下册知识点

一、比例

1、比例的基本性质是在比例里两内项积等于两外项积。

2、用x 和 y表示两种相关联的量,用k表示它们的比值(一定),那么正比例关系表示为:

Y : x = k(一定)

3、用x 和 y表示两种相关联的量,用k表示它们的乘积(一定),那么反比例关系表示为:

Xy=k(一定)

二、数与代数(复习)

1、自然数和0都是整数。

2、自然数:我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。 一个物体也没有,用0表示。0也是自然数。

3、计数单位:一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。

每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。

4、数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

5、数的整除:整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。

6:倍数和因数:如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的因数。倍数和因数是相互依存的。 因为35能被7整除,所以35是7的倍数,7是35的因数。

7、一个数的因数的个数是有限的,其中最小的因数是1,的因数是它本身。例如:10的因数有1、2、5、10,其中最小的因数是1,的因数是10。

8、一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、…其中最小的倍数是3 ,没有的倍数。

9、能被2整除的数叫做偶数。 不能被2整除的数叫做奇数。 0也是偶数。自然数按能否被2 整除的特征可分为奇数和偶数。

10、一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。

11、一个数,如果除了1和它本身还有别的因数,这样的数叫做合数,例如 4、6、8、9、12都是合数。

12、1不是质数也不是合数,自然数除了1外,不是质数就是合数。如果把自然数按其因数的个数的不同分类,可分为质数、合数和1。

13、每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5 叫做15的质因数。

14、几个数公有的因数,叫做这几个数的公因数。其中的一个,叫做这几个数的公因数,例如12的因数有1、2、3、4、6、12;18的因数有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公因数,6是它们的公因数。

15、公因数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:

16、如果较小数是较大数的因数,那么较小数就是这两个数的公因数。

17、如果两个数是互质数,它们的公因数就是1。

18、几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6 、8、10、12、14、16、18 ……

3的倍数有3、6、9、12、15、18 …… 其中6、12、18……是2、3的公倍数,6是它们的最小公倍数。。

19、如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。

20、几个数的公因数的个数是有限的,而几个数的公倍数的个数是无限的。

(二)小数

1、小数的意义 :把整数1平均分成10份、100份、1000份…… 得到的十分之几、百分之几、千分之几…… 可以用小数表示。

一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……

2、一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数是整数部分,小数点右边的数叫做小数部分。

3、在小数里,每相邻两个计数单位之间的进率都是10。小数部分的分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。

(三)分数

1、分数的意义 :把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。

2、把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。

3、分数的分类

真分数:分子比分母小的分数叫做真分数。真分数小于1。 假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。

4、约分:把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。

5、分子分母是互质数的分数叫做最简分数。

6、把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。

(四) 约分和通分

1、约分的方法:用分子和分母的公因数(1除外)去除分子、分母;通常要除到得出最简分数为止。

2、通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。

三 性质和规律

1、商不变的规律 :商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小相同的倍,商不变。

2、小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。

3、小数点位置的移动引起小数大小的变化

(1)小数点向右移动一位,原来的数就扩大10倍;小数点向右移动两位,原来的数就扩大100倍;小数点向右移动三位,原来的数就扩大1000倍……

(2)小数点向左移动一位,原来的数就缩小10倍;小数点向左移动两位,原来的数就缩小100倍;小数点向左移动三位,原来的数就缩小1000倍……

(3)小数点向左移或者向右移位数不够时,要用“0"补足位。

(五)分数的基本性质

分数的基本性质:分数的分子和分母都乘以或者除以相同的数(零除外),分数的大小不变。

(六)分数与除法的关系

1. 被除数÷除数= 被除数/除数

2. 因为零不能作除数,所以分数的分母不能为零。

3. 被除数 相当于分子,除数相当于分母。

四 运算的意义

(一)整数四则运算

加数+加数=和

一个加数=和-另一个加数

被减数-减数=差

被减数=减数+差

减数=被减数-差

一个因数× 一个因数 =积

一个因数=积÷另一个因数

被除数÷除数=商

除数=被除数÷商

被除数=商×除数

(二)运算定律

1. 加法交换律:两个数相加,交换加数的位置,它们的和不变,即a+b=b+a 。

2. 加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) 。

3. 乘法交换律:

两个数相乘,交换因数的位置它们的积不变,即a×b=b×a。

4. 乘法结合律:三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c) 。

5. 乘法分配律:

两个数的和与一个数相乘,可以把两个加数分别与这个数相乘再把两个积相加,即(a+b)×c=a×c+b×c 。

6. 减法的性质:

从一个数里连续减去几个数,可以从这个数里减去所有减数的和,差不变,即a-b-c=a-(b+c) 。

(三)运算法则

1. 整数加法计算法则:

相同数位对齐,从低位加起,哪一位上的数相加满十,就向前一位进一。

2. 整数减法计算法则:

相同数位对齐,从低位加起,哪一位上的数不够减,就从它的前一位退一作十,和本位上的数合并在一起,再减。

3. 整数乘法计算法则:

先用一个因数每一位上的数分别去乘另一个因数各个数位上的数,用因数哪一位上的数去乘,乘得的数的末尾就对齐哪一位,然后把各次乘得的数加起来。

4. 整数除法计算法则:

先从被除数的高位除起,除数是几位数,就看被除数的前几位;如果不够除,就多看一位,除到被除数的哪一位,商就写在哪一位的上面。如果哪一位上不够商1,要补“0”占位。每次除得的余数要小于除数。

5. 小数乘法法则:

先按照整数乘法的计算法则算出积,再看因数中共有几位小数,就从积的右边起数出几位,点上小数点;如果位数不够,就用“0”补足。

6. 除数是整数的小数除法计算法则:

先按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添“0”,再继续除。

7. 除数是小数的除法计算法则:

先移动除数的小数点,使它变成整数,除数的小数点也向右移动几位(位数不够的补“0”),然后按照除数是整数的除法法则进行计算。

8. 同分母分数加减法计算方法:

同分母分数相加减,只把分子相加减,分母不变。

9. 异分母分数加减法计算方法:

先通分,然后按照同分母分数加减法的的法则进行计算。

10. 带分数加减法的计算方法: 整数部分和分数部分分别相加减,再把所得的数合并起来。

(一)小数乘除法的意义及法则

1. 小数乘法意义:

小数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。例:3.5×4表示4个3.5相加是多少。或表示3.5的4倍是多少。

一个数乘小数的意义与整数乘法的意义不同,是求这个数的十分之几,百分之几,千分之几……。例:25×0.17,表示25的百分之十七是多少。

2. 小数除法的意义

小数除法的意义与整数除法的意义相同,是已知两个因数的积与其中的一个因数,求另一个因数的运算。例: 表示已知两个因数的积是0.75和其中一个因数0.5,求另一个因数是多少。或表示0.75是0.5的多少倍。

(二)小数乘除法的计算法则

1. 小数乘法法则:

(1)先按照整数乘法的法则计算;

(2)看因数中一共有几位小数,就从积的右边数出几位,点上小数点。

2. 小数除法法则:

(1)先按照整数除法的法则去除;

(2)商的小数点和被除数的小数点对齐;

(3)除到被除数的末尾仍有余数,就在余数后面添0再继续除。

二、 度量衡

长度单位换算

1千米=1000米 1米=10分米

1分米=10厘米 1米=100厘米

1厘米=10毫米

面积单位换算

1平方千米=100公顷

1公顷=10000平方米

1平方米=100平方分米

1平方分米=100平方厘米

1平方厘米=100平方毫米

体(容)积单位换算

1立方米=1000立方分米

1立方分米=1000立方厘米

1立方分米=1升

1立方厘米=1毫升

1立方米=1000升

重量单位换算

1吨=1000 千克

1千克=1000克

1千克=1公斤

人民币单位换算

1元=10角

1角=10分

1元=100分

时间单位换算

1世纪=100年 1年=12月

大月(31天)有:135781012月

小月(30天)的有:46911月

平年2月28天, 闰年2月29天

平年全年365天, 闰年全年366天

1日=24小时 1时=60分

1分=60秒 1时=3600秒

代数初步知识

一、用字母表示数

1 用字母表示数的意义和作用

2用字母表示常见的数量关系、运算定律和性质、几何形体的计算公式

(1)常见的数量关系

路程用s表示,速度v用表示,时间用t表示,三者之间的关系:

s=vt v=s/t t=s/v

总价用a表示,单价用b表示,数量用c表示,三者之间的关系:

a=bc b=a/c c=a/b

(2)运算定律和性质

加法交换律:a+b=b+a

加法结合律:(a+b)+c=a+(b+c)

乘法交换律:ab=ba

乘法结合律:(ab)c=a(bc)

乘法分配律:(a+b)c=ac+bc

减法的性质:a-(b+c) =a-b-c

(3)用字母表示几何形体的公式

长方形的长用a表示,宽用b表示,周长用c表示,面积用s表示。 c=2(a+b) s=ab

正方形的边长a用表示,周长用c表示,面积用s表示。 c=4a s=a2

平行四边形的底a用表示,高用h表示,面积用s表示。 s=ah

三角形的底用a表示,高用h表示,面积用s表示。

s=ah/2

梯形的上底用a表示,下底b用表示,高用h表示, s=(a+b)h/2

小学数学图形计算公式

1 、正方形 C周长 S面积 a边长 周长=边长×4 C=4a 面积=边长×边长 S=a×a

2 、正方体 V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a

3 、长方形

C周长 S面积 a边长

周长=(长+宽)×2

C=2(a+b)

面积=长×宽

S=ab

4 、长方体

V:体积 s:面积 a:长 b: 宽 h:高

(1)表面积(长×宽+长×高+宽×高)×2

S=2(ab+ah+bh)

(2)体积=长×宽×高

V=abh

5 三角形

s面积 a底 h高

面积=底×高÷2

s=ah÷2

三角形高=面积 ×2÷底

三角形底=面积 ×2÷高

6 平行四边形

s面积 a底 h高

面积=底×高

s=ah

7 梯形

s面积 a上底 b下底 h高

面积=(上底+下底)×高÷2

s=(a+b)× h÷2

8 圆形

S面积 C周长 ∏ d=直径 r=半径

(1)周长=直径×∏=2×∏×半径

C=∏d=2∏r

(2)面积=半径×半径×∏

9 圆柱体

v:体积 h:高 s;底面积 r:底面半径 c:底面周长

(1)侧面积=底面周长×高

(2)表面积=侧面积+底面积×2

(3)体积=底面积×高

(4)体积=侧面积÷2×半径

10 圆锥体

v:体积 h:高 s;底面积 r:底面半径

体积=底面积×高÷3

11、直径=半径×2 d=2r 半径=直径÷2 r= d÷2

12、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr

13、圆的面积=圆周率×半径×半径

(二)分数和百分数的应用

1、分数加减法应用题:分数加减法的应用题与整数加减法的应用题的结构、数量关系和解题方法基本相同,所不同的只是在已知数或未知数中含有分数。

2、分数乘法应用题:是指已知一个数,求它的几分之几是多少的应用题。

特征:已知单位“1”的量和分率,求与分率所对应的实际数量。

解题关键:准确判断单位“1”的量。找准要求问题所对应的分率,然后根据一个数乘分数的意义正确列式。

3、分数除法应用题:

(1)求一个数是另一个数的几分之几(或百分之几)是多少。

特征:已知一个数和另一个数,求一个数是另一个数的几分之几或百分之几。“一个数”是比较量,“另一个数”是标准量。求分率或百分率,也就是求他们的倍数关系。

解题关键:从问题入手,搞清把谁看作标准的数也就是把谁看作了“单位一”,谁和单位一的量作比较,谁就作被除数。

甲是乙的几分之几(百分之几):甲是比较量,乙是标准量,用甲除以乙。

甲比乙多(或少)几分之几(百分之几):甲减乙比乙多(或少几分之几)或(百分之几)。关系式:(甲数减乙数)/乙数或(甲数减乙数)/甲数 。

(2)已知一个数的几分之几(或百分之几 )是多少 ,求这个数。

特征:已知一个实际数量和它相对应的分率,求单位“1”的量。

解题关键:根据分数乘法的意义列方程,或者根据分数除法的意义列算式,但必须找准和分率相对应的已知实际数量。

4、百分率:

发芽率=发芽种子数/试验种子数×100%

小麦的出粉率= 面粉的重量/小麦的重量×100%

产品的合格率=合格的产品数/产品总数×100%

职工的出勤率=实际出勤人数/应出勤人数×100%

5、工程问题:是分数应用题的特例,它与整数的工作问题有着密切的联系。它是探讨工作总量、工作效率和工作时间三个数量之间相互关系的一种应用题。

解题关键:把工作总量看作单位“1”,工作效率就是工作时间的倒数,然后根据题目的具体情况,灵活运用公式。

数量关系:工作总量=工作效率×工作时间

工作效率=工作总量÷工作时间

工作时间=工作总量÷工作效率

工作总量÷工作效率和=合作时间

数学六年级学习方法

首先:课前复习。就是上课前花两三分钟把书本本节课要学的内容看一遍。仅仅是看一遍,过一遍。这样上课老师讲自己不但可以跟上老师节奏还可以再次巩固。其余不要干其他多余的事。

其次:上课时候一定要专心听讲,如果觉得老师这里讲得都懂了的话可以自己翻书看后面的内容。做习题的时候一定要一道一道往过做,不要越题做。因为对于课本来说这些都是基础,只有基础完全掌握后才能做难题。上课过程中第一次接触到的知识点概念等,一定一定要当堂背过。不然以后很难背过,不要妄想考前抱佛教再背

另外要把笔记记准确,知道自己需要记什么不需要记什么,憋一个劲地往书上搬。字不要求整齐,自己能看懂就行。课本资料书上有例题,多看多记方法。先看课本基础,在看资料书上着重的。例题的方法一定一定要理解,不要去背!接着下课再看笔记,只是略微巩固记住。

数学六年级学习技巧

养成良好的课前和课后学习习惯:在当前高中数学学习中,培养正确的学习习惯是一项重要的学习技能。虽然有一种刻板印象的猜疑,但在高中数学学习真的是反复尝试和错误的。学生们不得不预习课本。我准备的数学教科书不是简单的阅读,而是一个例子,至少十分钟的思考。在使用前不能通过学习知识解决问题的情况下,可以在教学内容中找到答案,然后在教材中考察问题的解决过程,掌握解决问题的思路。同时,在课堂上安排笔记也是必要的。在高中数学研究中,建议采用两种形式的笔记,一种是课堂速记,另一种是课后笔记。这不仅提高了课堂记忆的吸收能力,而且有助于对笔记内容的查询。

必考总结 篇4

一、气候变化

1、气候变化

是指一个特定地点、区域或全球的长时间的.气候改变,是以某些与平均天气状况有关的特征,如温度、降水量、风等要素的变化来度量的。

2、气候变化史

(1)地质时期:全球气候一直处于波动变化中,冷暖干湿相互交替,变化周期长短不一。

(2)历史时期:期间全球气候有两次较大的波动。

(3)近现代::全球平均地表温度呈上升趋势;

二、全球气候变化的影响

1、全球气候变化本身就是资源条件的变化。

2、加剧了自然灾害。

3、将导致原有生态系统的变化。

4、对主要生产领域,如农业、林业、牧业、渔业的影响更为显著。

5、通过极端天气和气候事件(如厄尔尼诺、干旱、洪涝、热浪等),对人体健康造成危害。

必考总结 篇5

地球运动的基本形式:公转和自转

绕转中心太阳地轴

方向自西向东(北天极上空看逆时针)自西向东(北极上空看逆时针,南极上空相反)

周期恒星年(365天6时9分10秒)恒星日(23时56分4秒)

角速度平均1/日近日点(1月初)快

远日点(7月初)快各地相等,每小时15??(两极除外)

线速度平均30千米/小时从赤道向两极递减,赤道1670KM小时,两极为0.

地球自转和公转的关系:

(1)黄赤交角:赤道平面和黄道平面的交角。目前是23??26'

(2)太阳直射点在南北回归线之间的移动

必考总结 篇6

1.红色:铜、Cu2O、品红溶液、酚酞在碱性溶液中、石蕊在酸性溶液中、液溴(深棕红)、红

磷(暗红)、苯酚被空气氧化、Fe2O3、(FeSCN)2+(血红)

2.橙色:溴水及溴的有机溶液(视溶液浓度不同,颜色由黄——橙)

3.黄色(1)淡黄色:硫单质、过氧化钠、溴化银、TNT、实验制得的不纯硝基苯、

(2)黄色:碘化银、黄铁矿(FeS2)、工业盐酸(含Fe3+)、久置的浓硝酸(含NO2)

(3)棕黄:FeCl3溶液、碘水(黄棕→褐色)

4.棕色:固体FeCl3、CuCl2(铜与氯气生成棕色烟)、NO2气(红棕)、溴蒸气(红棕)

5.褐色:碘酒、氢氧化铁(红褐色)、刚制得的溴苯(溶有Br2)

6.绿色:氯化铜溶液(蓝绿色)、碱式碳酸铜(俗称铜绿)、硫酸亚铁溶液或绿矾晶体(浅绿)、氯

气或氯水(黄绿色)

7.蓝色:胆矾、氢氧化铜沉淀、淀粉遇碘、石蕊遇碱性溶液、硫酸铜溶液

8.紫色:高锰酸钾溶液(紫红)、碘(紫黑)、碘的四氯化碳溶液(紫红)、碘蒸气

有色物质的溶液为什么会有颜色?

从光学角度,是说溶液对某一种或几种颜色的光的吸收能力很弱,而其余的可见光都被溶液吸收,因此我们看到的溶液的颜色就是除掉被吸收的光后剩下的光的混合颜色.比如说硫酸铜溶液,就是将除蓝光以外所有光都吸收了,只剩下蓝色光,所以我们看到硫酸铜溶液是蓝色的。

另外,从物质角度考虑,对于离子型的溶液(如硫酸铜溶液),是溶液中的某些离子(如硫酸铜溶液中的水合铜离子)的d轨道能级分裂成高、低两部分,而这两部分的能量之差恰好为某种颜色光的能量(如硫酸铜溶液中,水合铜离子3d轨道的分裂能恰好为某种蓝色光的能量).在这种情况下,当高能轨道上的某个电子跃迁到低能轨道上时,释放的能量便将以这种颜色的光的形式释放。

必考总结 篇7

一、光合作用的概念

1.概念及其反应式

光合作用是指绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存着能量的有机物,并且释放出氧的过程。

总反应式:CO2+H2O───CH2O+O2

反应式的书写应注意以下几点:(1)光合作用有水分解,尽管反应式中生成物一方没有写出水,但实际有水生成;(2)“─”不能写成“=”。

对光合作用的概念与反应式应该从光合作用的场所——叶绿体、条件——光能、原料——二氧化碳和水、产物——糖类等有机物和氧气来掌握。

2.光合作用的过程

①光反应阶段:a、水的光解:2H2O4[H]+O2(为暗反应提供氢);b、ATP的形成:ADP+Pi+光能─ATP(为暗反应提供能量)

②暗反应阶段:a、CO2的固定:CO2+C52C3b、C3化合物的还原:2C3+[H]+ATP;(CH2O)+C5

二、光合作用的意义

1.生物进化方面:

一是光合作用产生的O2为需氧型生物的出现提供了可能;

二是O2在一定条件下形成的臭氧(O3)吸收紫外线,减弱太阳辐射对生物的影响为水生生物到达陆地提供了可能;

三是光合作用产生的大量有机物为较高级异养型生物的出现提供了可能。

2.现实意义:提高光合作用效率,解决粮食短缺问题。主要应满足光合作用所需条件,内部条件——植物所需的各种矿质元素、光合作用的面积(适当密植),外部条件——充足的原料(CO2和H2O)、适宜的光照、较长的光合作用时间。

必考总结 篇8

1、线速度V=s/t=2πr/T

2、角速度ω=Φ/t=2π/T=2πf

3、向心加速度a=V2/r=ω2r=(2π/T)2r

4、向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合

5、周期与频率:T=1/f

6、角速度与线速度的关系:V=ωr

7、角速度与转速的关系ω=2πn(此处频率与转速意义相同)

8、主要物理量及单位:弧长(s):米(m);角度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。

(1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;

(2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。

3)万有引力

1、开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}

2、万有引力定律:F=Gm1m2/r2(G=6、67×10—11N?m2/kg2,方向在它们的连线上)

3、天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2{R:天体半径(m),M:天体质量(kg)}

4、卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}

5、第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7、9km/s;V2=11、2km/s;V3=16、7km/s

6、地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的'高度,r地:地球的半径}

(1)天体运动所需的向心力由万有引力提供,F向=F万;

(2)应用万有引力定律可估算天体的质量密度等;

(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;

(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);

(5)地球卫星的环绕速度和最小发射速度均为7、9km/s。

必考总结 篇9

一、细胞的吸水和失水

1、原理:发生了渗透作用,该作用必须具备两个条件:

(1)具有半透膜。

(2)膜两侧溶液具有浓度差。

2、动物细胞的吸水和失水(以红细胞为例:红细胞膜相当于一层半透膜):

①当外界溶液浓度<细胞质浓度时,细胞吸水。

②当外界溶液浓度>细胞质浓度时,细胞失水。

③当外界溶液浓度=细胞质浓度时,水分进出平衡。

3、植物细胞的吸水和失水:

①在成熟的植物细胞中,原生质层(细胞膜+液泡膜+二者之间的细胞质)相当于一层半透膜。

②成熟植物细胞发生质壁分离的条件是外界溶液浓度>细胞液浓度,发生质壁分离复原的.条件是外界溶液浓度<细胞液浓度。

二、物质跨膜运输的其他实例

2、生物膜的特性:细胞膜和其他生物膜可以让水分子自由通过,一些离子和小分子也可以通过,而其他的离子、小分子和大分子则不能通过,因此它们都是选择透过性膜。

思考:半透膜和选择透过性膜有哪些异同点?

①相同点:某些物质可以通过,另一些物质不能通过。

②不同点:选择透过性膜一定是半透膜,半透膜不一定是选择透过性膜。

细胞:

是生物体结构和功能的基本单位。除了病毒以外,所有生物都是由细胞构成的。细胞是地球上最基本的生命系统

生命系统的结构层次:

细胞→组织→器官→系统(植物没有系统)→个体→种群→群落→生态系统→生物圈

病毒的相关知识:

1、病毒(Virus)是一类没有细胞结构的生物体。主要特征:

①、个体微小,一般在10~30nm之间,大多数必须用电子显微镜才能看见;

②、仅具有一种类型的核酸,DNA或RNA,没有含两种核酸的病毒;

③、专营细胞内寄生生活;

④、结构简单,一般由核酸(DNA或RNA)和蛋白质外壳所构成。

2、根据寄生的宿主不同,病毒可分为动物病毒、植物病毒和细菌病毒(即噬菌体)三大类。根据病毒所含核酸种类的不同分为DNA病毒和RNA病毒。

3、常见的病毒有:人类流感病毒(引起流行性感冒)、SARS病毒、人类免疫缺陷病毒(HIV)[引起艾滋病(AIDS)]、禽流感病毒、乙肝病毒、人类天花病毒、狂犬病毒、烟草花叶病毒等。

必考总结 篇10

一、质点的运动(1)-----直线运动

1)匀变速直线运动

1、平均速度V平=s/t(定义式)2、有用推论Vt2-Vo2=2as

3、中间时刻速度Vt/2=V平=(Vt+Vo)/24、末速度Vt=Vo+at

5、中间位置速度Vs/2=[(Vo2+Vt2)/2]1/26、位移s=V平t=Vot+at2/2=Vt/2t

7、加速度a=(Vt-Vo)/t{以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}

8、实验用推论Δs=aT2{Δs为连续相邻相等时间(T)内位移之差}

9、主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3、6km/h。

注:

(1)平均速度是矢量;

(2)物体速度大,加速度不一定大;

(3)a=(Vt-Vo)/t只是量度式,不是决定式;

(4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。

2)自由落体运动

1、初速度Vo=0

2、末速度Vt=gt

3、下落高度h=gt2/2(从Vo位置向下计算)

4、推论Vt2=2gh

注:

(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;

(2)a=g=9、8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。

(3)竖直上抛运动

1、位移s=Vot-gt2/22、末速度Vt=Vo-gt(g=9、8m/s2≈10m/s2)

3、有用推论Vt2-Vo2=-2gs4、上升高度Hm=Vo2/2g(抛出点算起)

5、往返时间t=2Vo/g(从抛出落回原位置的时间)

注:

(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;

(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;

(3)上升与下落过程具有对称性,如在同点速度等值反向等。

二、质点的运动(2)----曲线运动、万有引力

1)平抛运动

1、水平方向速度:Vx=Vo2、竖直方向速度:Vy=gt

3、水平方向位移:x=Vot4、竖直方向位移:y=gt2/2

5、运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)

6、合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2

合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0

7、合位移:s=(x2+y2)1/2,

位移方向与水平夹角α:tgα=y/x=gt/2Vo

8、水平方向加速度:ax=0;竖直方向加速度:ay=g

注:

(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;

(2)运动时间由下落高度h(y)决定与水平抛出速度无关;

(3)θ与β的关系为tgβ=2tgα;

(4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。

2)匀速圆周运动

1、线速度V=s/t=2πr/T2、角速度ω=Φ/t=2π/T=2πf

3、向心加速度a=V2/r=ω2r=(2π/T)2r4、向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合

5、周期与频率:T=1/f6、角速度与线速度的关系:V=ωr

7、角速度与转速的关系ω=2πn(此处频率与转速意义相同)

8、主要物理量及单位:弧长(s):米(m);角度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。

注:

(1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;

(2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。

3)万有引力

1、开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}

2、万有引力定律:F=Gm1m2/r2(G=6、67×10-11N?m2/kg2,方向在它们的连线上)

3、天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2{R:天体半径(m),M:天体质量(kg)}

4、卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}

5、第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7、9km/s;V2=11、2km/s;V3=16、7km/s

6、地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径}

注:

(1)天体运动所需的向心力由万有引力提供,F向=F万;

(2)应用万有引力定律可估算天体的质量密度等;

(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;

(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);

(5)地球卫星的环绕速度和最小发射速度均为7、9km/s。

三、力(常见的力、力的合成与分解)

1)常见的力

1、重力G=mg(方向竖直向下,g=9、8m/s2≈10m/s2,作用点在重心,适用于地球表面附近)

2、胡克定律F=kx{方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)}

3、滑动摩擦力F=μFN{与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)}

4、静摩擦力0≤f静≤fm(与物体相对运动趋势方向相反,fm为静摩擦力)

5、万有引力F=Gm1m2/r2(G=6、67×10-11N?m2/kg2,方向在它们的连线上)

6、静电力F=kQ1Q2/r2(k=9、0×109N?m2/C2,方向在它们的连线上)

7、电场力F=Eq(E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)

8、安培力F=BILsinθ(θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0)

9、洛仑兹力f=qVBsinθ(θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0)

注:

(1)劲度系数k由弹簧自身决定;

(2)摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定;

(3)fm略大于μFN,一般视为fm≈μFN;

(4)其它相关内容:静摩擦力(大小、方向)〔见第一册P8〕;

(5)物理量符号及单位B:磁感强度(T),L:有效长度(m),I:电流强度(A),V:带电粒子速度(m/s),q:带电粒子(带电体)电量(C);

(6)安培力与洛仑兹力方向均用左手定则判定。

2)力的合成与分解

1、同一直线上力的合成同向:F=F1+F2,反向:F=F1-F2(F1>F2)

2、互成角度力的合成:

F=(F12+F22+2F1F2cosα)1/2(余弦定理)F1⊥F2时:F=(F12+F22)1/2

3、合力大小范围:|F1-F2|≤F≤|F1+F2|

4、力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)

注:

(1)力(矢量)的合成与分解遵循平行四边形定则;

(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;

(3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;

(4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;

(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。

四、动力学(运动和力)

1、牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止

2、牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}

3、牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}

4、共点力的平衡F合=0,推广{正交分解法、三力汇交原理}

5、超重:FN>G,失重:FN

6、牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子〔见第一册P67〕

注:平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。

五、振动和波(机械振动与机械振动的传播)

1、简谐振动F=-kx{F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}

2、单摆周期T=2π(l/g)1/2{l:摆长(m),g:当地重力加速度值,成立条件:摆角θ>r}

3、受迫振动频率特点:f=f驱动力

4、发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕

5、机械波、横波、纵波〔见第二册P2〕

6、波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}

7、声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)

8、波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大

9、波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)

10、多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕}

注:

(1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;

(2)加强区是波峰与波峰或波谷与波谷相遇处,减弱区则是波峰与波谷相遇处;

(3)波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种方式;

(4)干涉与衍射是波特有的;

(5)振动图象与波动图象;

(6)其它相关内容:超声波及其应用〔见第二册P22〕/振动中的能量转化〔见第一册P173〕。

六、冲量与动量(物体的受力与动量的变化)

1、动量:p=mv{p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同}

3、冲量:I=Ft{I:冲量(N?s),F:恒力(N),t:力的作用时间(s),方向由F决定}

4、动量定理:I=Δp或Ft=mvt–mvo{Δp:动量变化Δp=mvt–mvo,是矢量式}

5、动量守恒定律:p前总=p后总或p=p’′也可以是m1v1+m2v2=m1v1′+m2v2′

6、弹性碰撞:Δp=0;ΔEk=0{即系统的动量和动能均守恒}

7、非弹性碰撞Δp=0;0<ΔEK<ΔEKm{ΔEK:损失的动能,EKm:损失的动能}

8、完全非弹性碰撞Δp=0;ΔEK=ΔEKm{碰后连在一起成一整体}

9、物体m1以v1初速度与静止的物体m2发生弹性正碰:

v1′=(m1-m2)v1/(m1+m2)v2′=2m1v1/(m1+m2)

10、由9得的推论-----等质量弹性正碰时二者交换速度(动能守恒、动量守恒)

11、子弹m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失

E损=mvo2/2-(M+m)vt2/2=fs相对{vt:共同速度,f:阻力,s相对子弹相对长木块的位移}

注:

(1)正碰又叫对心碰撞,速度方向在它们“中心”的连线上;

(2)以上表达式除动能外均为矢量运算,在一维情况下可取正方向化为代数运算;

(3)系统动量守恒的条件:合外力为零或系统不受外力,则系统动量守恒(碰撞问题、爆炸问题、反冲问题等);

(4)碰撞过程(时间极短,发生碰撞的物体构成的系统)视为动量守恒,原子核衰变时动量守恒;

(5)爆炸过程视为动量守恒,这时化学能转化为动能,动能增加;(6)其它相关内容:反冲运动、火箭、航天技术的发展和宇宙航行〔见第一册P128〕。

七、功和能(功是能量转化的量度)

1、功:W=Fscosα(定义式){W:功(J),F:恒力(N),s:位移(m),α:F、s间的夹角}

2、重力做功:Wab=mghab{m:物体的质量,g=9、8m/s2≈10m/s2,hab:a与b高度差(hab=ha-hb)}

3、电场力做功:Wab=qUab{q:电量(C),Uab:a与b之间电势差(V)即Uab=φa-φb}

4、电功:W=UIt(普适式){U:电压(V),I:电流(A),t:通电时间(s)}

5、功率:P=W/t(定义式){P:功率[瓦(W)],W:t时间内所做的功(J),t:做功所用时间(s)}

6、汽车牵引力的功率:P=Fv;P平=Fv平{P:瞬时功率,P平:平均功率}

7、汽车以恒定功率启动、以恒定加速度启动、汽车行驶速度(vmax=P额/f)

8、电功率:P=UI(普适式){U:电路电压(V),I:电路电流(A)}

9、焦耳定律:Q=I2Rt{Q:电热(J),I:电流强度(A),R:电阻值(Ω),t:通电时间(s)}

10、纯电阻电路中I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt

11、动能:Ek=mv2/2{Ek:动能(J),m:物体质量(kg),v:物体瞬时速度(m/s)}

12、重力势能:EP=mgh{EP:重力势能(J),g:重力加速度,h:竖直高度(m)(从零势能面起)}

13、电势能:EA=qφA{EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)(从零势能面起)}

14、动能定理(对物体做正功,物体的动能增加):

W合=mvt2/2-mvo2/2或W合=ΔEK

{W合:外力对物体做的总功,ΔEK:动能变化ΔEK=(mvt2/2-mvo2/2)}

15、机械能守恒定律:ΔE=0或EK1+EP1=EK2+EP2也可以是mv12/2+mgh1=mv22/2+mgh2

16、重力做功与重力势能的变化(重力做功等于物体重力势能增量的负值)WG=-ΔEP

注:

(1)功率大小表示做功快慢,做功多少表示能量转化多少;

(2)O0≤α<90O做正功;90O<α≤180O做负功;α=90o不做功(力的方向与位移(速度)方向垂直时该力不做功);

(3)重力(弹力、电场力、分子力)做正功,则重力(弹性、电、分子)势能减少

(4)重力做功和电场力做功均与路径无关(见2、3两式);(5)机械能守恒成立条件:除重力(弹力)外其它力不做功,只是动能和势能之间的转化;(6)能的其它单位换算:1kWh(度)=3、6×106J,1eV=1、60×10-19J;(7)弹簧弹性势能E=kx2/2,与劲度系数和形变量有关。

八、分子动理论、能量守恒定律

1、阿伏加德罗常数NA=6、02×1023/mol;分子直径数量级10-10米

2、油膜法测分子直径d=V/s{V:单分子油膜的体积(m3),S:油膜表面积(m)2}

3、分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。

4、分子间的引力和斥力(1)r

(2)r=r0,f引=f斥,F分子力=0,E分子势能=Emin(最小值)

(3)r>r0,f引>f斥,F分子力表现为引力

(4)r>10r0,f引=f斥≈0,F分子力≈0,E分子势能≈0

5、热力学第一定律W+Q=ΔU{(做功和热传递,这两种改变物体内能的方式,在效果上是等效的),

W:外界对物体做的正功(J),Q:物体吸收的热量(J),ΔU:增加的内能(J),涉及到第一类永动机不可造出〔见第二册P40〕}

6、热力学第二定律

克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化(热传导的方向性);

开氏表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化(机械能与内能转化的方向性){涉及到第二类永动机不可造出〔见第二册P44〕}

7、热力学第三定律:热力学零度不可达到{宇宙温度下限:-273、15摄氏度(热力学零度)}

注:

(1)布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温度越高越剧烈;

(2)温度是分子平均动能的标志;

3)分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快;

(4)分子力做正功,分子势能减小,在r0处F引=F斥且分子势能最小;

(5)气体膨胀,外界对气体做负功W0;吸收热量,Q>0

(6)物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零;

(7)r0为分子处于平衡状态时,分子间的距离;

(8)其它相关内容:能的转化和定恒定律〔见第二册P41〕/能源的开发与利用、环保〔见第二册P47〕/物体的内能、分子的动能、分子势能〔见第二册P47〕。

九、气体的性质

1、气体的状态参量:

温度:宏观上,物体的冷热程度;微观上,物体内部分子无规则运动的剧烈程度的标志,

热力学温度与摄氏温度关系:T=t+273{T:热力学温度(K),t:摄氏温度(℃)}

体积V:气体分子所能占据的空间,单位换算:1m3=103L=106mL

压强p:单位面积上,大量气体分子频繁撞击器壁而产生持续、均匀的压力,标准大气压:1atm=1、013×105Pa=76cmHg(1Pa=1N/m2)

2、气体分子运动的特点:分子间空隙大;除了碰撞的瞬间外,相互作用力微弱;分子运动速率很大

3、理想气体的状态方程:p1V1/T1=p2V2/T2{PV/T=恒量,T为热力学温度(K)}

注:

(1)理想气体的内能与理想气体的体积无关,与温度和物质的量有关;

(2)公式3成立条件均为一定质量的理想气体,使用公式时要注意温度的单位,t为摄氏温度(℃),而T为热力学温度(K)。

十、电场

1、两种电荷、电荷守恒定律、元电荷:(e=1、60×10-19C);带电体电荷量等于元电荷的整数倍

2、库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=9、0×109N?m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}

3、电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}

4、真空点(源)电荷形成的电场E=kQ/r2{r:源电荷到该位置的距离(m),Q:源电荷的电量}

5、匀强电场的场强E=UAB/d{UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}

6、电场力:F=qE{F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}

7、电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q

8、电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}

9、电势能:EA=qφA{EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}

10、电势能的变化ΔEAB=EB-EA{带电体在电场中从A位置到B位置时电势能的差值}

11、电场力做功与电势能变化ΔEAB=-WAB=-qUAB(电势能的增量等于电场力做功的负值)

12、电容C=Q/U(定义式,计算式){C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}

13、平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)

常见电容器〔见第二册P111〕

14、带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2

15、带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)

类平垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d)

抛运动平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m

注:

(1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分;

(2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直;

(3)常见电场的电场线分布要求熟记〔见图[第二册P98];

(4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关;

(5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;

(6)电容单位换算:1F=106μF=1012PF;

(7)电子伏(eV)是能量的单位,1eV=1、60×10-19J;

(8)其它相关内容:静电屏蔽〔见第二册P101〕/示波管、示波器及其应用〔见第二册P114〕等势面〔见第二册P105〕。

十一、恒定电流

1、电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}

2、欧姆定律:I=U/R{I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}

3、电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω?m),L:导体的长度(m),S:导体横截面积(m2)}

4、闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外

{I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}

5、电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}

6、焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}

7、纯电阻电路中:由于I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R

8、电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}

9、电路的串/并联串联电路(P、U与R成正比)并联电路(P、I与R成反比)

电阻关系(串同并反)R串=R1+R2+R3+1/R并=1/R1+1/R2+1/R3+

电流关系I总=I1=I2=I3I并=I1+I2+I3+

电压关系U总=U1+U2+U3+U总=U1=U2=U3

功率分配P总=P1+P2+P3+P总=P1+P2+P3+

10、欧姆表测电阻

(1)电路组成(2)测量原理

两表笔短接后,调节Ro使电表指针满偏,得

Ig=E/(r+Rg+Ro)

接入被测电阻Rx后通过电表的电流为

Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx)

由于Ix与Rx对应,因此可指示被测电阻大小

(3)使用方法:机械调零、选择量程、欧姆调零、测量读数{注意挡位(倍率)}、拨off挡。

(4)注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零。

11、伏安法测电阻

电流表内接法:

电压表示数:U=UR+UA

电流表外接法:

电流表示数:I=IR+IV

Rx的测量值=U/I=UR/(IR+IV)=RVRx/(RV+R)

选用电路条件Rx>>RA[或Rx>(RARV)1/2]

选用电路条件Rx<

十二、滑动变阻器在电路中的限流接法与分压接法

限流接法

电压调节范围小,电路简单,功耗小

便于调节电压的选择条件Rp>Rx

电压调节范围大,电路复杂,功耗较大

便于调节电压的选择条件Rp

注:

(1)单位换算:1A=103mA=106μA;1kV=103V=106mA;1MΩ=103kΩ=106Ω

(2)各种材料的电阻率都随温度的变化而变化,金属电阻率随温度升高而增大;

(3)串电阻大于任何一个分电阻,并电阻小于任何一个分电阻;

(4)当电源有内阻时,外电路电阻增大时,总电流减小,路端电压增大;

(5)当外电路电阻等于电源电阻时,电源输出功率,此时的输出功率为E2/(2r);

(6)其它相关内容:电阻率与温度的关系半导体及其应用超导及其应用〔见第二册P127〕。

12磁场

1、磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位T),1T=1N/A?m

2、安培力F=BIL;(注:L⊥B){B:磁感应强度(T),F:安培力(F),I:电流强度(A),L:导线长度(m)}

3、洛仑兹力f=qVB(注V⊥B);质谱仪〔见第二册P155〕{f:洛仑兹力(N),q:带电粒子电量(C),V:带电粒子速度(m/s)}

4、在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种):

(1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动V=V0

(2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下a)F向=f洛=mV2/r=mω2r=mr(2π/T)2=qVB;r=mV/qB;T=2πm/qB;(b)运动周期与圆周运动的半径和线速度无关,洛仑兹力对带电粒子不做功(任何情况下);(c)解题关键:画轨迹、找圆心、定半径、圆心角(=二倍弦切角)。

注:

(1)安培力和洛仑兹力的方向均可由左手定则判定,只是洛仑兹力要注意带电粒子的正负;

(2)磁感线的特点及其常见磁场的磁感线分布要掌握〔见图及第二册P144〕;(3)其它相关内容:地磁场/磁电式电表原理〔见第二册P150〕/回旋加速器〔见第二册P156〕/磁性材料

十三、电磁感应

1、[感应电动势的大小计算公式]

1)E=nΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ/Δt:磁通量的变化率}

2)E=BLV垂(切割磁感线运动){L:有效长度(m)}

3)Em=nBSω(交流发电机的感应电动势){Em:感应电动势峰值}

4)E=BL2ω/2(导体一端固定以ω旋转切割){ω:角速度(rad/s),V:速度(m/s)}

2、磁通量Φ=BS{Φ:磁通量(Wb),B:匀强磁场的磁感应强度(T),S:正对面积(m2)}

3、感应电动势的正负极可利用感应电流方向判定{电源内部的电流方向:由负极流向正极}

4、自感电动势E自=nΔΦ/Δt=LΔI/Δt{L:自感系数(H)(线圈L有铁芯比无铁芯时要大),ΔI:变化电流,?t:所用时间,ΔI/Δt:自感电流变化率(变化的快慢)}

注:

(1)感应电流的方向可用楞次定律或右手定则判定,楞次定律应用要点〔见第二册P173〕;

(2)自感电流总是阻碍引起自感电动势的电流的变化;

(3)单位换算:1H=103mH=106μH;

(4)其它相关内容:自感〔见第二册P178〕/日光灯〔见第二册P180〕。

十四、交变电流(正弦式交变电流)

1、电压瞬时值e=Emsinωt电流瞬时值i=Imsinωt;(ω=2πf)

2、电动势峰值Em=nBSω=2BLv电流峰值(纯电阻电路中)Im=Em/R总

3、正(余)弦式交变电流有效值:E=Em/(2)1/2;U=Um/(2)1/2;I=Im/(2)1/2

4、理想变压器原副线圈中的电压与电流及功率关系

U1/U2=n1/n2;I1/I2=n2/n2;P入=P出

5、在远距离输电中,采用高压输送电能可以减少电能在输电线上的损失损′=(P/U)2R;(P损′:输电线上损失的功率,P:输送电能的总功率,U:输送电压,R:输电线电阻)〔见第二册P198〕;

6、公式1、2、3、4中物理量及单位:ω:角频率(rad/s);t:时间(s);n:线圈匝数;B:磁感强度(T);

S:线圈的面积(m2);U输出)电压(V);I:电流强度(A);P:功率(W)。